#ifndef USE_PTHREAD #include "thread.h" #include "debug.h" #include #include #include #include #include #include "ufd.h" #include #define HAS_STATUS(entry, value) ((entry->status) & (value)) #define SET_STATUS(entry, value) ((entry->status) |= (value)) #define UNSET_STATUS(entry, value) ((entry->status) &= ~(value)) #define FINISHED (1 << 0) #define IS_FINISHED(entry) (HAS_STATUS(entry, FINISHED)) #define ALLOCATED (1 << 1) #define WAS_ALLOCATED(entry) (HAS_STATUS(entry, ALLOCATED)) #define WAITING (1 << 2) #define IS_WAITING(entry) (HAS_STATUS(entry, WAITING)) #define WAITED (1 << 3) #define MUTEX_WAITING (1 << 4) #define MUTEX_LOCKING (1 << 5) #define MUTEX_MAXPRIO 5 #define IS_WAITED(entry) (HAS_STATUS(entry, WAITED)) #define IS_MUTEX_WAITING(entry) (HAS_STATUS(entry, MUTEX_WAITING)) #ifdef FIBO_STRAT #define YIELD (1 << 6) #define IS_YIELD(entry) (HAS_STATUS(entry, YIELD)) #endif #ifndef STACK_SIZE #define STACK_SIZE 4096 #endif // Variables used to clean up everything at the end of the processus static char stack_for_freeing[STACK_SIZE] = {0}; static int stack_valgrind_id = 0; static ucontext_t context_for_freeing; struct mutex_fifo_entry_t; struct context_entry_t { TAILQ_ENTRY(context_entry_t) link; // Use to navigate inside the list ucontext_t context; void *retvalue; // return value or if the thread is waited, the id of the thread that wait for it struct ufd_t waited_threads; struct mutex_fifo_entry_t mutex_fifo_entry; int valgrind_id; int status; int mutex_prio; char stack[STACK_SIZE]; }; // Current running thread static struct context_entry_t* running = NULL; TAILQ_HEAD(scheduler_fifo_t, context_entry_t); static struct scheduler_fifo_t scheduler_fifo = TAILQ_HEAD_INITIALIZER(scheduler_fifo); // Linked list used to store what's needed to be freed at the very end TAILQ_HEAD(ctx_to_free_fifo_t, context_entry_t); static struct ctx_to_free_fifo_t context_to_freed = TAILQ_HEAD_INITIALIZER(context_to_freed); int thread_yield(void) { //TRACE("thread_yield"); if (TAILQ_EMPTY(&scheduler_fifo)) { return 0; } if (HAS_STATUS(running, MUTEX_LOCKING)) { if (running->mutex_prio > 0) { running->mutex_prio--; DBG("skip yield : running thread is locking a mutex"); return 0; } else running->mutex_prio = MUTEX_MAXPRIO; } #ifdef FIBO_STRAT if (!(IS_YIELD(running)) && !IS_FINISHED(running) && !IS_WAITING(running)) { SET_STATUS(running, YIELD); return 0; } #endif struct context_entry_t* first = TAILQ_FIRST(&scheduler_fifo); TAILQ_REMOVE(&scheduler_fifo, first, link); if (!IS_FINISHED(running) && !IS_WAITING(running) && !IS_MUTEX_WAITING(running)) { TAILQ_INSERT_TAIL(&scheduler_fifo, running, link); } TRACE("PICKING %p (previous was %p)", first, running); // Switch to the new thread. struct context_entry_t* old_runner = running; running = first; swapcontext(&old_runner->context, &running->context); return 0; } thread_t thread_self(void) { return running; } /** * Wrap the function used by the thread to handle `return` statement * without using thread_exit. */ void thread_function_wrapper(void* (*func)(void*), void* funcarg) { TRACE("Wrapper for %p\n", func); thread_exit(func(funcarg)); } /** * Create an entry and put it at the end of the FIFO */ int thread_create(thread_t* newthread, void* (*func)(void*), void* funcarg) { DBG("Create a new thread that execute function %p", func); struct context_entry_t* new_entry; TRACE("Checking for previous allocated entry"); if (!TAILQ_EMPTY(&context_to_freed)) { new_entry = TAILQ_FIRST(&context_to_freed); TAILQ_REMOVE(&context_to_freed, new_entry, link); } else { TRACE("Allocating new entry"); new_entry = malloc(sizeof(*new_entry)); memset(new_entry->stack, 0, STACK_SIZE); new_entry->context.uc_stack.ss_sp = new_entry->stack; new_entry->context.uc_stack.ss_size = STACK_SIZE; new_entry->context.uc_stack.ss_flags = 0; // Tell Valgrind that the memory area of the future stack is a stack new_entry->valgrind_id = VALGRIND_STACK_REGISTER( new_entry->context.uc_stack.ss_sp, new_entry->context.uc_stack.ss_sp + new_entry->context.uc_stack.ss_size); } getcontext(&new_entry->context); // Use the entry's memory address as an id. TRACE("ALLOCATED %p", new_entry); new_entry->status = ALLOCATED; new_entry->retvalue = NULL; ufd__init(&new_entry->waited_threads, new_entry); new_entry->mutex_prio = MUTEX_MAXPRIO; *newthread = new_entry; makecontext(&new_entry->context, (void (*)(void))thread_function_wrapper, 2, func, funcarg); #ifdef FIBO_STRAT TAILQ_INSERT_HEAD(&scheduler_fifo, new_entry, link); #else TAILQ_INSERT_TAIL(&scheduler_fifo, new_entry, link); #endif return 0; } void print_entry(struct context_entry_t* entry) { TRACE("CONTEXT (%p, %p, %d);", entry, entry, WAS_ALLOCATED(entry)); } int thread_join(thread_t thread, void** retval) { TRACE("Join thread %p", thread); struct context_entry_t* entry = thread; // Check if the target is not already waited by another if (IS_WAITED(entry)) return -1; struct context_entry_t* entry_last_waited = ufd__find(&entry->waited_threads)->thread; if (entry_last_waited == running) { TRACE("Deadlock detected"); return EDEADLK; } if (!IS_FINISHED(entry)) { // Use status to be in waiting state SET_STATUS(running, WAITING); // Mark the waited thread as waited to not be waited by any other thread. SET_STATUS(entry, WAITED); // Use retvalue to share which thread is currently waiting for this thread entry->retvalue = running; ufd__join(&running->waited_threads, &entry->waited_threads); struct context_entry_t* running_last_waited = ufd__find(&running->waited_threads)->thread; DBG("%p is waiting for %p", running, entry); DBG("MUTEX WAITING %d %p", IS_MUTEX_WAITING(running_last_waited)); #ifdef FIBO_STRAT #else if (!IS_MUTEX_WAITING(running_last_waited)) { TAILQ_REMOVE(&scheduler_fifo, running_last_waited, link); TAILQ_INSERT_HEAD(&scheduler_fifo, running_last_waited, link); } #endif do { thread_yield(); } while (!IS_FINISHED(entry)); ufd__delete(&entry->waited_threads); } // Save returned value if needed TRACE("RETURNING %p IN %p", entry->retvalue, retval); if (retval) *retval = entry->retvalue; // Exit from waiting state UNSET_STATUS(running, WAITING); // Clean up DBG("(entry, was_alloacted) : %p,%d", entry, WAS_ALLOCATED(entry)); if (WAS_ALLOCATED(entry)) { DBG("ADDING (%p) TO FREED TAIL", entry); TAILQ_INSERT_TAIL(&context_to_freed, entry, link); } else { free(entry); } return 0; } void thread_exit(void* retval) { TRACE("Exit thread %p", running); print_entry(running); if (IS_WAITED(running)) { // If the thread was waited by another thread, we need to wake it up. struct context_entry_t* waiting = running->retvalue; UNSET_STATUS(running, WAITED); #ifdef FIBO_STRAT TAILQ_INSERT_HEAD(&scheduler_fifo, waiting, link); #else TAILQ_INSERT_TAIL(&scheduler_fifo, waiting, link); #endif } running->retvalue = retval; SET_STATUS(running, FINISHED); while (!TAILQ_EMPTY(&scheduler_fifo)) thread_yield(); exit(0); } void clear_context(void) { TRACE("INSIDE CLEAR"); struct context_entry_t* last = NULL; // Loop over remaining threads to clean them from the heap. while (!TAILQ_EMPTY(&scheduler_fifo)) { last = TAILQ_FIRST(&scheduler_fifo); TAILQ_REMOVE(&scheduler_fifo, last, link); if (WAS_ALLOCATED(last)) VALGRIND_STACK_DEREGISTER(last->valgrind_id); if (IS_WAITED(last)) { struct context_entry_t* waiting = last->retvalue; TAILQ_INSERT_TAIL(&scheduler_fifo, waiting, link); } free(last); } while (!TAILQ_EMPTY(&context_to_freed)) { last = TAILQ_FIRST(&context_to_freed); TAILQ_REMOVE(&context_to_freed, last, link); if (WAS_ALLOCATED(last)) VALGRIND_STACK_DEREGISTER(last->valgrind_id); free(last); } VALGRIND_STACK_DEREGISTER(stack_valgrind_id); exit(0); } void __attribute__((constructor)) setup_main_thread() { TRACE("premain"); // Create an entry for the main thread. struct context_entry_t *new_entry; for (int i = 0; i < 2000; ++i) { new_entry = malloc(sizeof(*new_entry)); memset(new_entry->stack, 0, STACK_SIZE); new_entry->context.uc_stack.ss_sp = new_entry->stack; new_entry->context.uc_stack.ss_size = STACK_SIZE; new_entry->context.uc_stack.ss_flags = 0; // Tell Valgrind that the memory area of the future stack is a stack new_entry->valgrind_id = VALGRIND_STACK_REGISTER( new_entry->context.uc_stack.ss_sp, new_entry->context.uc_stack.ss_sp + new_entry->context.uc_stack.ss_size); ufd__init(&new_entry->waited_threads, new_entry); new_entry->retvalue = NULL; new_entry->status = 0; TAILQ_INSERT_TAIL(&context_to_freed, new_entry, link); } struct context_entry_t* main = malloc(sizeof(*main)); // memset(main, 0, sizeof(*main)); getcontext(&main->context); main->status = 0; main->valgrind_id = 0; main->retvalue = NULL; ufd__init(&main->waited_threads, main); running = main; // Create a context with static stack to clean everything at the end. getcontext(&context_for_freeing); stack_valgrind_id = VALGRIND_STACK_REGISTER(stack_for_freeing, stack_for_freeing + STACK_SIZE); context_for_freeing.uc_stack.ss_sp = stack_for_freeing; context_for_freeing.uc_stack.ss_size = STACK_SIZE; makecontext(&context_for_freeing, (void (*)(void)) clear_context, 0); } void __attribute__((destructor)) clear_last_thread() { TRACE("POST"); // Running is the initial main thread. No need to switch to a static stack. TAILQ_INSERT_HEAD(&scheduler_fifo, running, link); if (!WAS_ALLOCATED(running)) { clear_context(); exit(0); } // Running's stack was allocated by us, lets switch to a static stack first. swapcontext(&running->context, &context_for_freeing); exit(0); } int thread_mutex_init(thread_mutex_t* mutex) { STAILQ_INIT(&mutex->fifo); return mutex->dummy = 0; } int thread_mutex_destroy(thread_mutex_t* mutex) { return 0; } int thread_mutex_lock(thread_mutex_t* mutex) { // Add to mutex fifo DBG("Lock mutex %p\n", mutex); while (! __sync_bool_compare_and_swap(&mutex->dummy, 0, 1)) { DBG("Wait for mutex %p\n", mutex); STAILQ_INSERT_TAIL(&mutex->fifo, &running->mutex_fifo_entry, link); // Use status to be in waiting state SET_STATUS(running, MUTEX_WAITING); running->mutex_fifo_entry.thread = running; thread_yield(); } SET_STATUS(running, MUTEX_LOCKING); running->mutex_prio = MUTEX_MAXPRIO; mutex->dummy = 1; return 0; } int thread_mutex_unlock(thread_mutex_t* mutex) { DBG("Unlock mutex %p\n", mutex); if (!STAILQ_EMPTY(&mutex->fifo)) { struct mutex_fifo_entry_t* first = STAILQ_FIRST(&mutex->fifo); STAILQ_REMOVE_HEAD(&mutex->fifo, link); UNSET_STATUS(first->thread, MUTEX_WAITING); TAILQ_INSERT_TAIL(&scheduler_fifo, first->thread, link); } mutex->dummy = 0; UNSET_STATUS(running, MUTEX_LOCKING); return 0; } #endif