#ifndef USE_PTHREAD #include "thread.h" #include "debug.h" #include #include #include #include #include #include #define FINISHED 0x1 #define IS_FINISHED(entry) (entry->status & FINISHED) #define ALLOCATED 0x2 #define WAS_ALLOCATED(entry) (entry->status & ALLOCATED) #define WAITING 0x4 #define IS_WAITING(entry) (entry->status & WAITING) #define GET_LAST_WAITED_THREAD(entry) (entry->last_waited ? entry->last_waited->last_thread : NULL) #define WAITED 0x8 #define YIELD (char) 0x20 #define MUTEX_WAITING (char) 0x10 #define IS_WAITED(entry) (entry->status & WAITED) #define IS_MUTEX_WAITING(entry) (entry->status & MUTEX_WAITING) #ifndef STACK_SIZE #define STACK_SIZE 4096 #endif // Variables used to clean up everything at the end of the processes #ifndef HASHMAP_SIZE #define HASHMAP_SIZE 16384 #endif // Variables used to clean up everything at the end of the processus static char stack_for_freeing[STACK_SIZE] = {0}; static int stack_valgrind_id = 0; static ucontext_t context_for_freeing; struct last_thread_t; struct mutex_fifo_entry_t; struct context_entry { TAILQ_ENTRY(context_entry) link; // Use to navigate inside the list ucontext_t context; void *retvalue; // return value or if the thread is waited, the id of the thread that wait for it struct last_thread_t *last_waited; struct mutex_fifo_entry_t* mutex_fifo_entry; int valgrind_id; char status; }; struct last_thread_t { STAILQ_ENTRY(last_thread_t) link; struct context_entry * last_thread; int ref; // number of reference to this struct (for free) }; // Use TailQ from queue BSD static TAILQ_HEAD(context_head, context_entry) head = TAILQ_HEAD_INITIALIZER(head); // Current running thread static struct context_entry* running = NULL; static TAILQ_HEAD(freed_context_head, context_entry) context_to_freed = TAILQ_HEAD_INITIALIZER(context_to_freed); static STAILQ_HEAD(last_thread_head, last_thread_t) last_thread_freed = STAILQ_HEAD_INITIALIZER(last_thread_freed); struct mutex_fifo_entry_t { STAILQ_ENTRY(mutex_fifo_entry_t) link; struct context_entry* thread; }; STAILQ_HEAD(mutex_fifo, mutex_fifo_entry_t) mutex_fifo; static struct mutex_fifo* mutex_fifo_hashmap[HASHMAP_SIZE] = {}; int thread_yield(void) { //TRACE("thread_yield"); if (TAILQ_EMPTY(&head)) { return 0; } if (!(running->status & YIELD) && !IS_FINISHED(running)) { running->status |= YIELD; return 0; } /* Current strategy : * if we have checked the number of threads then keep the running one * otherwise, take the first element of the list should not be null * remove it from the head and put it at the end to take it in the next round * check if the thread is not finished and is not waiting for a non finished thread * check if the thread is not the running one. */ struct context_entry* first = TAILQ_FIRST(&head); TAILQ_REMOVE(&head, first, link); if (!IS_FINISHED(running) && !IS_WAITING(running) && !IS_MUTEX_WAITING(running)) { TAILQ_INSERT_TAIL(&head, running, link); } TRACE("PICKING %p (previous was %p)", first, running); // Switch to the new thread. struct context_entry* old_runner = running; running = first; swapcontext(&old_runner->context, &running->context); return 0; } thread_t thread_self(void) { // This condition should not be true at any moment after main call if (running == NULL) { return 0; } return running; } /** * Wrap the function used by the thread to handle `return` statement * without using thread_exit. */ void thread_function_wrapper(void* (*func)(void*), void* funcarg) { TRACE("Wrapper for %p\n", func); thread_exit(func(funcarg)); } /** * Create an entry and put it at the end of the FIFO */ int thread_create(thread_t* newthread, void* (*func)(void*), void* funcarg) { DBG("Create a new thread that execute function %p", func); struct context_entry* new_entry; TRACE("Checking for previous allocated entry"); if (!TAILQ_EMPTY(&context_to_freed)) { new_entry = TAILQ_FIRST(&context_to_freed); TAILQ_REMOVE(&context_to_freed, new_entry, link); } else { TRACE("Allocating new entry"); new_entry = malloc(sizeof(*new_entry)); new_entry->context.uc_stack.ss_sp = malloc(STACK_SIZE); memset(new_entry->context.uc_stack.ss_sp, 0, STACK_SIZE); new_entry->context.uc_stack.ss_size = STACK_SIZE; new_entry->context.uc_stack.ss_flags = 0; // Tell Valgrind that the memory area of the future stack is a stack new_entry->valgrind_id = VALGRIND_STACK_REGISTER( new_entry->context.uc_stack.ss_sp, new_entry->context.uc_stack.ss_sp + new_entry->context.uc_stack.ss_size); } getcontext(&new_entry->context); // Use the entry's memory address as an id. TRACE("ALLOCATED %p", new_entry); new_entry->status = ALLOCATED; new_entry->retvalue = NULL; new_entry->last_waited = NULL; new_entry->mutex_fifo_entry = NULL; *newthread = new_entry; makecontext(&new_entry->context, (void (*)(void))thread_function_wrapper, 2, func, funcarg); TAILQ_INSERT_TAIL(&head, new_entry, link); return 0; } void print_entry(struct context_entry* entry) { TRACE("CONTEXT (%p, %p, %d);", entry, entry, WAS_ALLOCATED(entry)); } int thread_join(thread_t thread, void** retval) { TRACE("Join thread %p", thread); struct context_entry* entry = thread; // Check if the target is not already waited by another if (IS_WAITED(entry)) { return -1; } if(GET_LAST_WAITED_THREAD(entry) == running) { TRACE("Deadlock detected"); return EDEADLK; } if (!IS_FINISHED(entry)) { // Use status to be in waiting state running->status |= WAITING; // Mark the waited thread as waited to not be waited by any other thread. entry->status |= WAITED; // Use retvalue to share which thread is currently waiting for this thread entry->retvalue = running; /** Deadlock **/ // if the running thread is solo (not waited by anyone) if(!IS_WAITED(running)) { // if the thread that we want to join is already in a "group" of waiting threads if (IS_WAITING(entry)) { // give the last thread waited to the running thread running->last_waited = entry->last_waited; } else { // the thread we want to join is solo if (STAILQ_EMPTY(&last_thread_freed)) { running->last_waited = malloc(sizeof(struct last_thread_t)); } else { running->last_waited = STAILQ_FIRST(&last_thread_freed); STAILQ_REMOVE_HEAD(&last_thread_freed, link); } running->last_waited->ref = 0 ; entry->last_waited = running->last_waited; running->last_waited->last_thread = entry; } running->last_waited->ref++; } else { // the running thread is already part of a groupe of waiting threads if (IS_WAITING(entry)) { // the thread we want to join is part of a groupe of waiting threads // release the last_waited of this entry running->last_waited->last_thread = GET_LAST_WAITED_THREAD(entry); } else { // the thread we want to join is solo and has no last_waited allocated running->last_waited->last_thread = entry; entry->last_waited = running->last_waited; entry->last_waited->ref ++; } } DBG("%p is waiting for %p", running, entry); if (!IS_MUTEX_WAITING(GET_LAST_WAITED_THREAD(running))) { TAILQ_REMOVE(&head, GET_LAST_WAITED_THREAD(running), link); TAILQ_INSERT_HEAD(&head, GET_LAST_WAITED_THREAD(running), link); } do { thread_yield(); } while (!IS_FINISHED(entry)); // Exit from waiting state running->status &= ~WAITING; if (running->last_waited) { // Release the last waited thread if no one use it anymore DBG("Last waited ref : %d", running->last_waited->ref); if (--running->last_waited->ref == 0) { STAILQ_INSERT_TAIL(&last_thread_freed, running->last_waited, link); // free(running->last_waited); } running->last_waited = NULL; } } // Save returned value if needed TRACE("RETURNING %p IN %p", entry->retvalue, retval); if (retval) *retval = entry->retvalue; // Clean up DBG("(entry, was_alloacted) : %p,%d", entry, WAS_ALLOCATED(entry)); if (WAS_ALLOCATED(entry)) { DBG("ADDING (%p) TO FREED TAIL", entry); TAILQ_INSERT_TAIL(&context_to_freed, entry, link); } else { free(entry->context.uc_stack.ss_sp); free(entry); } return 0; } void thread_exit(void* retval) { TRACE("Exit thread %p", running); print_entry(running); running->status |= FINISHED; if (IS_WAITED(running)) { // If the thread was waited by another thread, we need to wake it up. struct context_entry* waited = running->retvalue; TAILQ_INSERT_TAIL(&head, waited, link); } running->retvalue = retval; if (!TAILQ_EMPTY(&head)) { thread_yield(); } exit(0); } void clear_context(void) { TRACE("INSIDE CLEAR"); struct context_entry* last = NULL; // Loop over remaining threads to clean them from the heap. while (!TAILQ_EMPTY(&head)) { last = TAILQ_FIRST(&head); TAILQ_REMOVE(&head, last, link); free(last->mutex_fifo_entry); if (WAS_ALLOCATED(last)) { free(last->context.uc_stack.ss_sp); VALGRIND_STACK_DEREGISTER(last->valgrind_id); } if (IS_WAITED(last)) { struct context_entry* waited = last->retvalue; TAILQ_INSERT_TAIL(&head, waited, link); } free(last); } while (!TAILQ_EMPTY(&context_to_freed)) { last = TAILQ_FIRST(&context_to_freed); free(last->mutex_fifo_entry); TAILQ_REMOVE(&context_to_freed, last, link); if (WAS_ALLOCATED(last)) { free(last->context.uc_stack.ss_sp); VALGRIND_STACK_DEREGISTER(last->valgrind_id); } free(last); } struct last_thread_t* last_thread; while (!STAILQ_EMPTY(&last_thread_freed)) { last_thread = STAILQ_FIRST(&last_thread_freed); STAILQ_REMOVE_HEAD(&last_thread_freed, link); free(last_thread); } // Free all the fifo that might have been allocated for (int i = 0 ; i < HASHMAP_SIZE ; ++i) free(mutex_fifo_hashmap[i]); VALGRIND_STACK_DEREGISTER(stack_valgrind_id); exit(0); } void __attribute__((constructor)) setup_main_thread() { TRACE("premain"); // Create an entry for the main thread. struct context_entry* main = malloc(sizeof(*main)); // memset(main, 0, sizeof(*main)); getcontext(&main->context); main->status = 0; main->retvalue = NULL; main->last_waited = NULL; main->mutex_fifo_entry = NULL; running = main; // Create a context with static stack to clean everything at the end. getcontext(&context_for_freeing); stack_valgrind_id = VALGRIND_STACK_REGISTER(stack_for_freeing, stack_for_freeing + STACK_SIZE); context_for_freeing.uc_stack.ss_sp = stack_for_freeing; context_for_freeing.uc_stack.ss_size = STACK_SIZE; makecontext(&context_for_freeing, (void (*)(void)) clear_context, 0); } void __attribute__((destructor)) clear_last_thread() { TRACE("POST"); // Running is the initial main thread. No need to switch to a static stack. TAILQ_INSERT_HEAD(&head, running, link); if (!WAS_ALLOCATED(running)) { clear_context(); exit(0); } // Running's stack was allocated by us, lets switch to a static stack first. swapcontext(&running->context, &context_for_freeing); exit(0); } int thread_mutex_init(thread_mutex_t* mutex) { long id = ((long)mutex) % HASHMAP_SIZE; if (mutex_fifo_hashmap[id] == NULL) { mutex_fifo_hashmap[id] = malloc(sizeof(mutex_fifo)); STAILQ_INIT(mutex_fifo_hashmap[id]); } return mutex->dummy = 0; } int thread_mutex_destroy(thread_mutex_t* mutex) { long id = ((long)mutex) % HASHMAP_SIZE; struct mutex_fifo_entry_t* last = NULL; while (!STAILQ_EMPTY(mutex_fifo_hashmap[id])) { last = STAILQ_FIRST(mutex_fifo_hashmap[id]); STAILQ_REMOVE_HEAD(mutex_fifo_hashmap[id], link); free(last); } return 0; } int thread_mutex_lock(thread_mutex_t* mutex) { // Add to mutex fifo long id = ((long)mutex) % HASHMAP_SIZE; DBG("Lock mutex %d\n", id); while (! __sync_bool_compare_and_swap(&mutex->dummy, 0, 1)) { DBG("Wait for mutex %d\n", id); if (running->mutex_fifo_entry == NULL) running->mutex_fifo_entry = malloc(sizeof(struct mutex_fifo_entry_t)); STAILQ_INSERT_TAIL(mutex_fifo_hashmap[id], running->mutex_fifo_entry, link); // Use status to be in waiting state running->status |= MUTEX_WAITING; running->mutex_fifo_entry->thread = running; thread_yield(); } mutex->dummy = 1; return 0; } int thread_mutex_unlock(thread_mutex_t* mutex) { long id = ((long)mutex) % HASHMAP_SIZE; DBG("Unlock mutex %d\n", id); if (!STAILQ_EMPTY(mutex_fifo_hashmap[id])) { struct mutex_fifo_entry_t* first = STAILQ_FIRST(mutex_fifo_hashmap[id]); STAILQ_REMOVE_HEAD(mutex_fifo_hashmap[id], link); first->thread->status &= ~MUTEX_WAITING; TAILQ_INSERT_TAIL(&head, first->thread, link); } return mutex->dummy = 0; } #endif